Brine shrimp | |
---|---|
Artemia salina | |
Scientific classification | |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Subphylum: | Crustacea |
Class: | Branchiopoda |
Order: | Anostraca |
Family: | Artemiidae Grochowski, 1895 |
Genus: | Artemia Leach, 1819 |
Species[1] | |
|
Artemia is a genus of aquatic crustaceans known as brine shrimp. Artemia, the only genus in the family Artemiidae, has changed little externally since the Triassic period. The historical record of the existence of Artemia dates back to 982 from Urmia Lake, Iran, although the first unambiguous record are the report and drawings made by Schlösser in 1756 of animals from Lymington, England.[2] Artemia populations are found worldwide in inland saltwater lakes, but not in oceans. Artemia are able to avoid cohabitating with most types of predators, such as fish, by their ability to live in waters of very high salinity up to 250‰.[3]
The ability of the Artemia to produce dormant eggs, known as cysts, has led to extensive use of Artemia in aquaculture. The cysts may be stored for long periods and hatched on demand to provide a convenient form of live feed for larval fish and crustaceans.[3] Nauplii of the brine shrimp Artemia constitute the most widely used food item, and over 2000 tonnes of dry Artemia cysts are marketed worldwide annually. In addition, the resilience of Artemia makes them ideal animals for running biological toxicity assays and is now one of the standard organisms for testing the toxicity of chemicals. A breed of Artemia is sold as a novelty gift under the marketing name Sea-Monkeys.
Contents |
The brine shrimp Artemia comprises a group of eight species very likely to have diverged from an ancestral form living in the Mediterranean area about 5.5 million years ago.[4]
Artemia is a typical primitive arthropod with a segmented body to which is attached broad leaf-like appendages. The body usually consists of 19 segments, the first 11 of which have pairs of appendages, the next two which are often fused together carry the reproductive organs, and the last segments lead to the tail.[5] The total length is usually about 8 millimetres (0.31 in)-10 millimetres (0.39 in) for the adult male and 10 millimetres (0.39 in)-12 millimetres (0.47 in) for the female, but the width of both sexes, including the legs, is about 4 millimetres (0.16 in).
The body of Artemia is divided into head, thorax, and abdomen. The entire body is covered with a thin, flexible exoskeleton of chitin to which muscles are attached internally and shed periodically.[6] In female Artemia a moult precedes every ovulation.
For brine shimp, many functions, including swimming, digestion and reproduction are not controlled through the brain; instead, local nervous system ganglia may control some regulation or synchronization of these functions.[6] Autonomy, the voluntary shedding or dropping of parts of the body for defense, is also controlled locally along the nervous system.[5] Artemia have two types of eyes. They have two widely separated compound eyes mounted on flexible stalks. These compound eyes are the main optical sense organ in adult brine shrimps. The median eye, or the naupliar eye, is situated anteriorly in the centre of the head and is the only functional optical sense organ in the nauplius, which is functional until the adult stage.[6]
Brine shrimp can tolerate varying levels of salinity from 5‰ to 250‰, and occupy the ecological niche that can protect them from predators.[7] The preferred level of salinity is about 30–35‰. Locomotion is achieved by the rhythmic beating of the appendages acting in pairs. Respiration occurs on the surface of the legs through fibrous, feather-like plates (lamellar epipodites)[5]
In their first stage of development, Artemia nauplii do not feed but consume their own energy reserves stored in the cyst.[8] Wild brine shrimp eat microscopic planktonic algae. Cultured brine shrimp can also be fed particulate foods including yeast, wheat flour, soybean powder or egg yolk.[9]
Adult female brine shrimp ovulate approximately every 140 hours. In favourable conditions, the female brine shrimp can produce eggs that almost immediately hatch. While in extreme conditions, such as low oxygen level or salinity above 150‰, female brine shrimp produce eggs with a chorion coating which has a brown colour. These eggs, also known as cysts, are metabolically inactive and can remain in total stasis for two years while in dry oxygen-free conditions, even at temperatures below freezing. This characteristic is called cryptobiosis, meaning "hidden life". While in cryptobiosis, brine shrimp eggs can survive temperatures of liquid air (−190 °C or −310.0 °F) and a small percentage can survive above boiling temperature (105 °C or 221 °F) for up to two hours.[7] Once placed in briny (salt) water (>5‰), the eggs hatch within a few hours. The nauplii, or larvae, are less than 0.4 mm in length when they first hatch. Brine shrimp have a biological life cycle of one year.
Fish farm owners search for a cost-effective, easy to use, and available food that is preferred by the fish. From cysts, brine shrimp nauplii can readily to be used to feed to fish and crustacean larvae just after one-day incubation. Instar I (the nauplii that just hatched and with large yolk reserves in their body) and instar II nauplii (the nauplii after first moult and with functional digestive tracts) are more widely used in aquaculture, for the reasons they are easy for operation, nutrients rich, and of small size which makes them suitable for feeding fish and crustacean larvae live or after drying.
Artemia found favour as a "standard" organism in toxicological assays, despite the recognition that it is too robust an organism to be a sensitive indicator species.[10]
In pollution research Artemia, the brine shrimp, has had extensive use as a test organism and in some circumstances is an acceptable alternative to the toxicity testing of mammals in the laboratory.[11] The fact that millions of brine shrimp are so easily reared has been an important help in assessing the effects of a large number of environmental pollutants on the shrimps under well controlled experimental conditions.
Artemia monica, the variety commonly known as Mono Lake brine shrimp, are found only in Mono Lake, Mono County, California. In 1987, Dennis D. Murphy from Stanford University petitioned the United States Fish and Wildlife Service to add Artemia monica to the endangered species list under the Endangered Species Act (1973). Despite there being trillions of these creatures in Mono Lake, it was felt that rising levels of salinity and sodium hydroxide concentration of the lake would endanger them because of the increase in pH. However, the US Fish and Wildlife Service reported in the Federal Register on 7 September 1995 that this brine shrimp did not warrant listing after the threat to the lake was removed following a revised policy by the California State Water Resources Control Board.[12]
Scientists have taken the eggs of brine shrimp to outer space to test the impact of radiation hazard to life. Brine shrimp cysts were flown on the U.S. Biosatellite II, Apollo 16, and Apollo 17 missions, and on the Russian Bion-3 (Cosmos 782), Bion-5 (Cosmos 1129), Foton 10 and Foton 11 flights. Some of the Russian flights carried European Space Agency experiments.
On Apollo 16 and Apollo 17, the cysts traveled to the moon and back. The cosmic ray passed through an egg would be detected on the photographic film in their container. Some eggs were kept on Earth as experimental controls to ensure a fair test. Also, as the take-off in a spacecraft involves a lot of shaking and acceleration, one control group of egg cysts was accelerated to seven times the force of gravity and vibrated mechanically from side to side for several minutes so that they could experience the same violence of a rocket take-off.[13] There were 400 eggs in each experimental group. All the egg cysts from the experiment were then placed in salt water to hatch under optimum conditions. As a result, a high sensitivity to cosmic radiation was observed on Artemia salina eggs; 90% of the embryos, which were induced to develop from hit eggs, died at different developmental stages.[14]
Several Space Shuttle flights carried brine shrimp including STS-37 which had brine shrimp born in space, some of which survived after landing. In 2011, STS-134 carried a middle-school designed experiment containing brine shrimp.
Russian/European flights sometimes used the Artemia franciscana species of brine shrimp, instead of A. salina.
|